75 research outputs found

    Construction of functional brain connectivity networks from fMRI data with driving and modulatory inputs: An extended conditional Granger causality approach

    Get PDF
    We propose a numerical-based approach extending the conditional MVAR Granger causality (MVGC) analysis for the construction of directed connectivity networks in the presence of both exogenous/stimuli and modulatory inputs. The performance of the proposed scheme is validated using both synthetic stochastic data considering also the influence of haemodynamics latencies and a benchmark fMRI dataset related to the role of attention in the perception of visual motion. The particular fMRI dataset has been used in many studies to evaluate alternative model hypotheses using the Dynamic Causal Modelling (DCM) approach. Based on the use of the Bayes factor, we show that the obtained GC connectivity network compares well to a reference model that has been selected through DCM analysis among other candidate models. Thus, our findings suggest that the proposed scheme can be successfully used as a stand-alone or complementary to DCM approach to find directed causal connectivity patterns in task-related fMRI studies

    A numerical method for the approximation of stable and unstable manifolds of microscopic simulators

    Get PDF
    We address a numerical methodology for the approximation of coarse-grained stable and unstable manifolds of saddle equilibria/stationary states of multiscale/stochastic systems for which a macroscopic description does not exist analytically in a closed form. Thus, the underlying hypothesis is that we have a detailed microscopic simulator (Monte Carlo, molecular dynamics, agent-based model etc.) that describes the dynamics of the subunits of a complex system (or a black-box large-scale simulator) but we do not have explicitly available a dynamical model in a closed form that describes the emergent coarse-grained/macroscopic dynamics. Our numerical scheme is based on the equation-free multiscale framework, and it is a three-tier procedure including (a) the convergence on the coarse-grained saddle equilibrium, (b) its coarse-grained stability analysis, and (c) the approximation of the local invariant stable and unstable manifolds; the later task is achieved by the numerical solution of a set of homological/functional equations for the coefficients of a polynomial approximation of the manifolds

    Coarse Brownian Dynamics for Nematic Liquid Crystals: Bifurcation Diagrams via Stochastic Simulation

    Full text link
    We demonstrate how time-integration of stochastic differential equations (i.e. Brownian dynamics simulations) can be combined with continuum numerical bifurcation analysis techniques to analyze the dynamics of liquid crystalline polymers (LCPs). Sidestepping the necessity of obtaining explicit closures, the approach analyzes the (unavailable in closed form) coarse macroscopic equations, estimating the necessary quantities through appropriately initialized, short bursts of Brownian dynamics simulation. Through this approach, both stable and unstable branches of the equilibrium bifurcation diagram are obtained for the Doi model of LCPs and their coarse stability is estimated. Additional macroscopic computational tasks enabled through this approach, such as coarse projective integration and coarse stabilizing controller design, are also demonstrated

    Extreme learning machine collocation for the numerical solution of elliptic PDEs with sharp gradients

    Get PDF
    We address a new numerical method based on machine learning and in particular based on the concept of the so-called Extreme Learning Machines, to approximate the solution of linear elliptic partial differential equations with collocation. We show that a feedforward neural network with a single hidden layer and sigmoidal transfer functions and fixed, random, internal weights and biases can be used to compute accurately enough a collocated solution for such problems. We discuss how one can set the range of values for both the weights between the input and hidden layer and the biases of the hidden layer in order to obtain a good underlying approximating subspace, and we explore the required number of collocation points. We demonstrate the efficiency of the proposed method with several one-dimensional diffusion–advection–reaction benchmark problems that exhibit steep behaviors, such as boundary layers. We point out that there is no need of iterative training of the network, as the proposed numerical approach results to a linear problem that can be easily solved using least-squares and regularization. Numerical results show that the proposed machine learning method achieves a good numerical accuracy, outperforming central Finite Differences, thus bypassing the time-consuming training phase of other machine learning approaches

    Construction of embedded fMRI resting-state functional connectivity networks using manifold learning

    Get PDF
    We construct embedded functional connectivity networks (FCN) from benchmark resting-state functional magnetic resonance imaging (rsfMRI) data acquired from patients with schizophrenia and healthy controls based on linear and nonlinear manifold learning algorithms, namely, Multidimensional Scaling, Isometric Feature Mapping, Diffusion Maps, Locally Linear Embedding and kernel PCA. Furthermore, based on key global graph-theoretic properties of the embedded FCN, we compare their classification potential using machine learning. We also assess the performance of two metrics that are widely used for the construction of FCN from fMRI, namely the Euclidean distance and the cross correlation metric. We show that diffusion maps with the cross correlation metric outperform the other combinations

    ISOMAP and machine learning algorithms for the construction of embedded functional connectivity networks of anatomically separated brain regions fromresting state fMRI data of patients with Schizophrenia

    Get PDF
    We construct Functional Connectivity Networks (FCN) from resting state fMRI (rsfMRI) recordings towards the classification of brain activity between healthy and schizophrenic subjects using a publicly available dataset (the COBRE dataset) of 145 subjects (74 healthy controls and 71 schizophrenic subjects). First, we match the anatomy of the brain of each individual to the Desikan- Killiany brain atlas. Then, we use the conventional approach of correlating the parcellated time series to construct FCN and ISOMAP, a nonlinear manifold learning algorithm to produce low-dimensional embeddings of the correlation matrices. For the classification analysis, we computed five key local graph-theoretic measures of the FCN and used the LASSO and Random Forest (RF) algorithms for feature selection. For the classification we used standard linear Support Vector Machines. The classification performance is tested by a double cross-validation scheme [consisting of an outer and an inner loop of “Leave one out” cross-validation (LOOCV)]. The standard cross-correlation methodology produced a classification rate of 73.1%, while ISOMAP resulted in 79.3%, thus providing a simpler model with a smaller number of features as chosen from LASSO and RF, namely the participation coefficient of the right thalamus and the strength of the right lingual gyrus

    Analytical and numerical bifurcation analysis of a forest ecosystem model with human interaction

    Get PDF
    We perform both analytical and numerical bifurcation analysis of an alternating forest and grassland ecosystem model coupled with human interaction. The model consists of two nonlinear ordinary differential equations incorporating the human perception of the value of the forest. The system displays multiple steady states corresponding to different forest densities as well as regimes characterized by both stable and unstable limit cycles. We derive analytically the conditions with respect to the model parameters that give rise to various types of codimension-one criticalities such as transcritical, saddle-node, and Andronov-Hopf bifurcations and codimension-two criticalities such as cusp and Bogdanov-Takens bifurcations at which homoclinic orbits occur. We also perform a numerical continuation of the branches of limit cycles. By doing so, we reveal turning points of limit cycles marking the appearance/disappearance of sustained oscillations. Such critical points that cannot be detected analytically give rise to the abrupt loss of the sustained oscillations, thus leading to another mechanism of catastrophic shifts

    Data-based analysis, modelling and forecasting of the COVID-19 outbreak

    Get PDF
    Since the first suspected case of coronavirus disease-2019 (COVID-19) on December 1st, 2019, in Wuhan, Hubei Province, China, a total of 40,235 confirmed cases and 909 deaths have been reported in China up to February 10, 2020, evoking fear locally and internationally. Here, based on the publicly available epidemiological data for Hubei, China from January 11 to February 10, 2020, we provide estimates of the main epidemiological parameters. In particular, we provide an estimation of the case fatality and case recovery ratios, along with their 90% confidence intervals as the outbreak evolves. On the basis of a Susceptible-Infectious-Recovered-Dead (SIDR) model, we provide estimations of the basic reproduction number (R0), and the per day infection mortality and recovery rates. By calibrating the parameters of the SIRD model to the reported data, we also attempt to forecast the evolution of the outbreak at the epicenter three weeks ahead, i.e. until February 29. As the number of infected individuals, especially of those with asymptomatic or mild courses, is suspected to be much higher than the official numbers, which can be considered only as a subset of the actual numbers of infected and recovered cases in the total population, we have repeated the calculations under a second scenario that considers twenty times the number of confirmed infected cases and forty times the number of recovered, leaving the number of deaths unchanged. Based on the reported data, the expected value of R0 as computed considering the period from the 11th of January until the 18th of January, using the official counts of confirmed cases was found to be ~4.6, while the one computed under the second scenario was found to be ~3.2. Thus, based on the SIRD simulations, the estimated average value of R0 was found to be ~2.6 based on confirmed cases and ~2 based on the second scenario. Our forecasting flashes a note of caution for the presently unfolding outbreak in China. Based on the official counts for confirmed cases, the simulations suggest that the cumulative number of infected could reach 180,000 (with a lower bound of 45,000) by February 29. Regarding the number of deaths, simulations forecast that on the basis of the up to the 10th of February reported data, the death toll might exceed 2,700 (as a lower bound) by February 29. Our analysis further reveals a significant decline of the case fatality ratio from January 26 to which various factors may have contributed, such as the severe control measures taken in Hubei, China (e.g. quarantine and hospitalization of infected individuals), but mainly because of the fact that the actual cumulative numbers of infected and recovered cases in the population most likely are much higher than the reported ones. Thus, in a scenario where we have taken twenty times the confirmed number of infected and forty times the confirmed number of recovered cases, the case fatality ratio is around ~0.15% in the total population. Importantly, based on this scenario, simulations suggest a slow down of the outbreak in Hubei at the end of February

    Designing social distancing policies for the COVID-19 pandemic: A probabilistic model predictive control approach

    Get PDF
    The effective control of the COVID-19 pandemic is one the most challenging issues of recent years. The design of optimal control policies is challenging due to a variety of social, political, economical and epidemiological factors. Here, based on epidemiological data reported in recent studies for the Italian region of Lombardy, which experienced one of the largest and most devastating outbreaks in Europe during the first wave of the pandemic, we present a probabilistic model predictive control (PMPC) approach for the systematic study of what if scenarios of social distancing in a retrospective analysis for the first wave of the pandemic in Lombardy. The performance of the proposed PMPC was assessed based on simulations of a compartmental model that was developed to quantify the uncertainty in the level of the asymptomatic cases in the population, and the synergistic effect of social distancing during various activities, and public awareness campaign prompting people to adopt cautious behaviors to reduce the risk of disease transmission. The PMPC takes into account the social mixing effect, i.e. the effect of the various activities in the potential transmission of the disease. The proposed approach demonstrates the utility of a PMPC approach in addressing COVID-19 transmission and implementing public relaxation policies
    corecore